(±)-3,4-methylenedioxymethamphetamine and metabolite disposition in plasma and striatum of wild-type and multidrug resistance protein 1a knock-out mice.
نویسندگان
چکیده
Mice lacking multidrug resistance protein 1a (mdr1a) are protected from methylenedioxymethamphetamine (MDMA)-induced neurotoxicity, suggesting mdr1a might play an important role in this phenomenon. We characterized MDMA pharmacokinetics in murine plasma and brain to determine if mdr1a alters MDMA distribution. Wild-type (mdr1a⁺/⁺) and mdr1a knock-out (mdr1a⁻/⁻) mice received i.p. 10, 20 or 40 mg/kg MDMA. Plasma and brain specimens were collected 0.3-4 h after MDMA, and striatum were dissected. MDMA and metabolites were quantified in plasma and striatum by gas chromatography-mass spectrometry. MDMA maximum plasma concentrations (C(max)) for both strains were 916- 1363, 1833-3546, and 5979-7948 μg/L, whereas brain C(max) were 6673-14,869, 23,428-29,433, and 52,735-66,525 μg/kg after 10, 20, or 40 mg/kg MDMA, respectively. MDMA and metabolite striatum/plasma AUC ratios were similar in both strains, inconsistent with observed MDMA neuroprotective effects in mdr1a⁻/⁻ mice. Ratios of methylenedioxyamphetamine (MDA) and 4-hydroxy-3-methoxymethamphetamine (HMMA) AUCs exceeded 18% of MDMA's in plasma, suggesting substantial MDMA hepatic metabolism in mice. MDMA, MDA, HMMA, and 4-hydroxy-3-methoxyamphetamine maximum concentrations and AUCs exhibited nonlinear relationships during dose-escalation studies, consistent with impaired enzymatic demethylenation. Nonlinear increases in MDMA plasma and brain concentrations with increased MDMA dose may potentiate MDMA effects and toxicity.
منابع مشابه
Impact of abcc2 [multidrug resistance-associated protein (MRP) 2], abcc3 (MRP3), and abcg2 (breast cancer resistance protein) on the oral pharmacokinetics of methotrexate and its main metabolite 7-hydroxymethotrexate.
The ATP-binding cassette (ABC) transporters ABCC2 [multidrug resistance-associated protein (MRP) 2], ABCC3 (MRP3), and ABCG2 (breast cancer resistance protein) are involved in the efflux of potentially toxic compounds from the body. We have shown before that ABCC2, ABCC3, and ABCG2 together influence the pharmacokinetics of the anticancer and antirheumatic drug methotrexate (MTX) and its toxic ...
متن کاملCorrection to "Mrp3 Transports Clopidogrel Acyl Glucuronide from the Hepatocytes into Blood".
Clopidogrel acyl glucuronide (CLP-G) is a major phase II metabolite of clopidogrel generated in the liver for further excretion into urine; however, it is unclear whether CLP-G transports from hepatocytes into blood. Because multidrug resistance-associated protein 3 (MRP3) is predominantly expressed in the sinusoidal side of hepatocytes and preferentially transports glucuronide conjugates of dr...
متن کاملIntestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol.
The phytoestrogen resveratrol has putative health-promoting effects and is present in several dietary constituents. Resveratrol is metabolized extensively in the gut epithelium, resulting in the formation of hydrophilic glucuronic acid and sulfate conjugates. These polar resveratrol conjugates need specific transporters to cross the cell membrane. We show here that vectorial transport of some o...
متن کاملAccelerated Communication Endoxifen, the Active Metabolite of Tamoxifen, Is a Substrate of the Efflux Transporter P-Glycoprotein (Multidrug Resistance 1)
Tamoxifen is widely prescribed to patients with estrogen receptor-positive breast cancer, and it is a prodrug that requires bioactivation by cytochrome P450 enzymes CYP2D6 and 3A4 to generate the active metabolite, endoxifen. Large interpatient variability in endoxifen plasma levels has been reported, and polymorphisms in CYP2D6 have been implicated as a major determinant of such variability. H...
متن کاملEndoxifen, the active metabolite of tamoxifen, is a substrate of the efflux transporter P-glycoprotein (multidrug resistance 1).
Tamoxifen is widely prescribed to patients with estrogen receptor-positive breast cancer, and it is a prodrug that requires bioactivation by cytochrome P450 enzymes CYP2D6 and 3A4 to generate the active metabolite, endoxifen. Large interpatient variability in endoxifen plasma levels has been reported, and polymorphisms in CYP2D6 have been implicated as a major determinant of such variability. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of analytical toxicology
دوره 35 7 شماره
صفحات -
تاریخ انتشار 2011